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A. SOURCE SOLUTION JOR SHORT CRESTED 7&7ES 

FOREWaRD 

This study was performed under two contracts, as it is basio to both* 
Consequently it is being issued as a report on both Series 3, and Series 61. 

ABSTRACT 

A Green*8 function for the boundary value problem arising in the 
diffraotion of short-orested waves &.?ou2.3.  oo*t*cies of bounded oross section 
is presented.  3he diffraction problem is formulated in a precise way which 
assures the existence and uniqueness of a solution.  The Green's function 
is so constructed as to make possible a representation of the velocity poten- 
tial at internal points of the fluid in terms of its values on bhe obstacle, 
chus in general reducing the diffraction problem to the solution of a 
Frledholm integral equation of the seoond kind.  Two problems of interest 
in the theory of surface waves, the production of waves by a moving partition, 
and the reflection from a horizontal strip are studied by meanB of the 
Green's function. Numerical results are obtained for the first problem and 
indications of numerical procedures given for the seoond. In particular, the 
strip problem is so formulated as to make possible the application, of the 
variational methods of Sohwinger. 
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1» Introduction 

A difficult but fundamental problem in the theory of surface water wares 
is the study of diffraction around fixed obstacles. Suoh a situation arises 
in the theory of docks, piles, breakwaters and, as an auxiliary problem, in 
the study of ship motion.  In three dimensional motion the problem has been at- 
tacked by Fritz Joha(^) who succeeded in obtaining an integral equation formu- 
lation involving singular kernels* Beyond this little has been done for the 
case of obstacles of finite extent* 

The purpose of the present report is to present a source solution in the 
oase of the so-called short-orested waves, i.e., waves which are periodic in 
a direction parpendioular to *,hat of propagation* Such a solution is the 
fundamental tool in an investigation of associated diffraction problems by 
means of Frit: John's methods, raysioaiiy, it givoo lue volwwikj yvWtt«Ul 5? ~ 
line source on whioh the strength varies periodically along the line. Uath- 
ematioally it enables one to express the potential of the interior of the fluid 
in terms of d&ta on the obstacle surface. 

In Section two we present the function and study its properties as well 
as is.iics.ts ths general diffraction problsas to which, it- is applicable- Is the 
next two sections we indicate how the solution may be used in two problems, the 
determination of the waves produced hy a weve-aakerB and the reflection «o- 
effioient for a rigid horizontal barrier in the free surface* A few numerical 
results are given for the first problem. 

The use of a source solution, or Green's function, is well known for 
other boundary value problems* In addition to yielding existence theorems 
which insure that the problem is correctly formulated, they may be used to ob- 
tain some approximate solutions. For example, it is shown in Seotion 4 that 
such a formulation enables one to invoke the variational procedures of Sohwinger. 

An effort has been made in this report to present ideas whioh admit of 
numerioal computations. Some work of this kind is, in faot, underway now and 
will be presented at a later time* * 

2*  The (green's Function 

In order to introduce the souroe solution in a natural way we will dis- 
cuss briefly the general diffraotion problem for short-orested waves in the 
presenoe of cylindrical obstacles. 

Suppose an inecapreasible, nor.-viseous fluid fills ths region,-00< x <+CO 

» Superscript numerals rerer to Hsfcrsnaes at end of report. 
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_c0< Z < +00,  0<y<a .    The plane y • 0 is to be a rigid bottom and y = a 

a free surface. We assume the motion to be generated initially by a short- 

crested wave system, of small amplitude, progressing in a positive x-direotion. 

Such a system may be represented by its velocity potential, 

rfr'i'        A u -. I (*. x-  CT t>  COS f  J (15 _-| CT t \      COS <P   = A cosh y0 y e sin k Z = Re [<p   £ \   s)n   k Z 

where A is a constant and     y0 , w0     are determined by 

(2.1) 

K = 
2     » • 2 

w0 =/0~k — =y0tonh /0a,      w0 = /0 K    . ,2#2j 

It should be noted that Equation (2.2) puts an upper limit on k in order that 

the waves progress in the x-direction, namely     k < K ,   and we shall 

henceforth assume tnis to bo oho v»».<<>• 

How 1st a cylindrical obstacle of bounded oross section be fitted in the 

fluid.  %e resulting moti^ once steady state is reached, will again be time 

periodic with frequency cr  .        Moreover; we reduce the problem to one in 

two-dimensions by assuming the Z dependence to remain in the form   .  k Z . 

Under these assumptions we write for the velocity potential of the ensuing 

motion, 

cos *(x,y,Z,t) =Re (<£(x, y)*-iert  ) , 

and there results,  for     <£   , the equation 

kZ (2.3) 

<£       + <t>        - k2 </>  = 0 
XX vv in fluid ^2.4) 

If we denote by      C0      the trace of the obstacle on the x-y plane,  and by 

CF that portion of y • a exterior to CQ, vc find that       <f>       is also subjeot 

to the boundary conditions, 

on CF (2»5) 

(2.6) 

<r\-K<£   =   0 

4>n   -0 

ou 

on 

y=0 

^o (2.7) 

•.»<iii"mg! 
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where       n      denotes  -Hho normal to C0. 

Xc oruor to fix tha solution uniquely it ie neoessary to specify con- 

dition* at infinity.    His would aspect the motion to oonsist of an incident plus 

a reflected and transmitted ssve,  i.e.,  a oondition of the form 

<f>  - f"-  Ttf' x — +00, <p  -  <p      —   R£ a3    x—-00.    (2.8) 

It turns out to be sufficient to demand only the weaker oondition 

T-<D{£***   (L,y)-«C^ (L,y)l2dy+^!^ (~L,y) - .C*{-L,y)|« dy} =0 (2.9) 

for some  C > 0  , where  <// — cp ~ <p     represents the scattered wave.  It can 

be shown that there is a unique <fi     satisfying (2.4), (2.5), (2.6), (2.7) and (2.9) 

and that this solution does not indeed satisfy (2.8). 

Th*  Green's function, G (x, y, x',y'), whioh depends on a parameter 

point ( *' , y ' ) is tc be so oonstructed that it expresses values or solutions 

at (: in terms of data on the obstaole surfaoe C0.  It is to satisfy 

(2.S) on the entire y • a plane, as well as (2.6), so as to suppress reference 

to values of the solution on y * 0 and Cp.  in addition it must have a singularity 

of a certain type for  (x, y) = (.*•' , y') in order that the operation 

/•** ra 

J       J    iC»xx + Gyy -k
2 G) <£ (x, y) dy dx 

reproduce solutions of (2.4). Finally G must carry the behavior of the solution 

for large Ix I  and henoe must satisfy (2.9). 

The fundamental singularity cf Equation (2.4) is found by separation of 

variables and is given by K0 ( k «/ x
2 + y2 )   where   K0    is essentially 

the Hankel function of order 0 and first type with uure imaginary argument. For 

our purpose, the important properties of     K0 (Z)     are 

K0 (Z) = 0(<?"
z )   for large       Z  , (2.10) 

K0 (Z)  = A (Z) log y   + B (Z) (2.11) 

where AlZ),    B'Z)       are regular for real        Z       and   A (0) = I   . 

& \ 
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It can be shovra that the  Green's function as defined is unique and we 

proceed to sive suoh a function*    Consider, 

G(x,y, x , y )   m » j- r 
"   Jo 

C 

cosh yy' {K sinh y(a-y)-y cosh y(a-y)} . 
 y {K cosh ya-y sir;//o>    cos w lx-x I dw 

for y <. y 

7T 

cosh y y {K sinh /(a-y^-y cosh y(o-y')} , 
{,, TT     "   1 cos W IX ~ X I d"' 

K cosh ya-y smh ya> 

for y < y (2.12) 

2     2     2 
where   V  = w -f k    and C is a oontour consisting of the positive x-axis 

ezoept for a small seml-oirole around  w0 = v/o
2 " k*  (whioh is real if k<K). 

This function was given by Heinsv ' in its partial fraction expansion form. 

Making use of the identities, 

cosh   y £ {K sinh   y (q-£)-y cosh  y(a-£)} -(K + y)cosh y£ cosh y C, &~ 

y { K cosh   y a - y sinh y a }• y { K cosh ya-y sinh y a} 

X 
a)    /_- v  W   • K w 

P  ____ 

+ —gy - + -—-£— 

^o ./«/ + k2 

expression (2.12) may be transformed into. 

cos wx dw = Kc ( k ^/ x2 + b2  )   , (2.13) 

G (x, y, x'', y')  =    2¥  K0 (k   V   (x-x')1    (y + y')«)+   2^Ko(ky (x~x'F   (y+y')z ) 

-I (K + y) cosh yy cosh yy' £ 
y \K cosh y a — y sinh   y a} COS w lx-x I dw • 

Gy   =  0 

c (2.14) 

le proceed to verify that. G has the desired properties, from (2:14) 

on  y = 0      and from (2.13) Gy ~ KG = 0 on  y *« a * 

Horftover, G satisfies (2.4) except at {%'r , y' ) where it nas a singularity or the 

prescribed type. In order to study the behavior of large j x|  it is con- 

venient to make some further transformations on (2*14). We note that. 

si. I 
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-7ft, -ZO Res    | !_    (K+ y) cosh yy cosh   yy' g"   1 _    J_   (K-> y ) &' '       cosh   y0 y  cosh   %, y' 

w=wb I     " y(Kcosh ya-ysinh   yo)   J~     ~'~    w0 sinh   % a 7+    2 ?o ° 
'     sinh 2 po- 

ttos w* obtain, by shifting the contour,  C, 

G ( x, y, *', y') -   2T K0 ( k v^^T{"'y-?")*" ) + gV K0( k ^ (x- x')8 + (y + y7*)*) 

i (K + y ) g" °a      cosh   y0 y  cosh   y0 y tw„|x-X'l 
w0   sinh   y0 a + -T g 7i a 

sin?. 2 r I? 

t /" (K + y) cosh   y y   cosh   y y        |«^|x-x'l 
y ( K cosh y a - y sir.r; ya) dw 

x - X 

(2.15) 

where    C'   is a contour lying in the first or fourth quadrant aooording; as 

is ''0 or  <0 .  It follows, using (2.10) that, 

w0 s*r.h y a      , +   * Va ° (2.16) 
sinh 2 -v0a 

Now the equation (2.2) has, in addition to the real roots    ± y0   , 

an infinity of imaginary roots   ± i pn   , n• I, 2 , • -. . Consequently, although 

we make no use of the faot, the above transformation oould be used to obtain 

id 

an expansion of the integral term in a series of the functions. 

In the case of infinite depth, the transformation say be oarried a OHM what 

further in order to yield an expression for Q involving only real integrals. For 

convenience, we change th» coordinate system so that y is measured vertically 

downward from the free surfaos.  Then (2* 15)becomes, 

COS pn (y -y ) e 
/Oplx-x'l cos />„ vy + y') e   '» 

0. I X - X ' I 

-iHTtnrfTiiriirrr r - -—  



.  I 

-      1     • 

G(x,y, x',y/)= KofkVtx-x^+Cy-yO1 ) -  *J* *-«<*•»'> ff'wo«*-x'i 

"  "        Jo    y(K-y)   g * dw    .        (2*17 

where now C consists of the positive imaginary azis exoept for a small 

semi-oirole in the right half plane about the singularity at   7 = 0, i.e., 

w = i k .  Computing the real part one is led to, 

G (x, y, x', yO = yy K0 ( k y (x-x')* + {>• W ) + ~ Ko( k ^"x^TyTTF' ) 

2i '< .-K(y + y ')  iw ( x - x') 
Wo 

2K /»Ty»in y(y + y') + K cos y(y + y')   - rfx-x') 
7T A    L 7 (y2 4-K2) e   lv* *'j dr  (2.18) 

with  y  — v/r*-k* and principal values of the integrals are meant, and where 

use has been made of (2.13). 

3. Wave Generation by Moving Partitions 

As a first application we consider t-he generation of water waves in a 

basin by means of a vortical partition.  It is assumed that the partition is 

divided into seotions along its length, each of vrhioh cay be moved with an in- 

dependent amplitude and phase.  If the seotions are sufficiently small, the 

distribution of horizontal velocity of the partition may be given effectively an 

arbitrary shape* We suppose the entire partition to be sufficiently long 

that «o may neglect end effects. The problem is to determine the motion, and 

the thrust needed to obtain that motion, which should be given the partition in 

order to produce • prescribed wave motion. 

The solution is contained in the following result whioh is essentially 

a generalisation of the work of Havelook* ' and Eoanard^*'. 

yggmmem vi • •*-- .• '-'-• --I-- 
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is a solution of the problem, 

> .   .-. J    -      », « 

1h« function <f> (x, y)     define.! by, 
.*» CO 

cMx, y) = -2 /      f (y') G (x,o, x'   y') dy  , 
Jo 

(3.1) 

»)     Pxx + <£yy  -k2^=0 

d)    </> — A cosh   yQ y   6> 

lim <^ 

•)  „-0*"3«     : f(y) 

iV¥0 X 

in 0 < x < 00 ,       0<y<a 

on y = 0  ,       x > 0 

on y = a   ,       x > 0 

as x — CO 

for 0<y<o   and   f (y) continuous in   0<y<u 

Prooft The first throe properties follow immediately from those of G -, 

(d)  follows from  (2.16) with, 

,-r0a 
A = +  w0 sinh yoa        ,   ,       2 75° J0      M y )  COSh  % y     dy     . (3.2) 

sinh  2)go 

From (2.14)   it follows that. 

:i0. if = ± :_0 r«y'i & M.VI.-.'•,-,^) „,<. lim 

x 

Cn making use of  (2.11) and the oontinuity of f we can reduce this further 

to, 
hm 

x 

r+a>      x dx 
J-m        x2+(y-y 7j?   = 

n dj> ±_   lim f ,   ,   f*m x  dx 
— 0*   d «    ~     ff     X — Cf My) JL.     x2+(y-y')2 

Then we malce use of the faot that, 

ir    for      x > 0 

- IT     for     x < 0 

to obtain _^ n*    '"V*     =  f iy)     .     This  oompletes the proof and yields 

in addition the useful corollary 

Corollary, If     <£(x, y) = -2 J°   f(y') K0( k >/TxzT')8+(y-y')* Jdy'with f(y) 

oontinuous, 

lim d ft ( i 

m-\ 
lim 

x   — CT     0 *. 
d ft 

= f(y) , 
lim 

x -* 0"    d x 
d ft 

= -f (y) (3.3) 

V «HR 
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Formula (2.3) is a  special case of a more general theorem which we 

will not develop hero.  Integrals of the above type represent "souroe layers" 

analogous to those occurring in ordinary potential theory,and formula (3.3) is 

merely a statement of the jump condition at such a layer. 

W3 are now in a position to consider the wave generation problem. 

To simplify the analysis we assume the generator is of the plunger type so 

that f(y) = B a constant.  *e denote hw v I y, z, • i the horizontal 

velocity of the partition and by 

Noting that, 

our theorem enables us to consider several oases. 

Case (l)    E real, 

^c = B cos a t cos k z , 

the surface elevation at infinity. 

(3.4) 

V "° - 'cs 

C    ~J    a f yj 

2 n °  \ 
*»     l1    T    Sinh 2  /oa   I 

VS       =    & r fT   •     c*i r\      u t T)    "»     = 
2 a B/g 

w0   (I  + 
Z  -v. a 

cos   (w0 x - a t) cos kz 

cos   (w0 x ~ cr t) sin kz 
sinh   2jja ; 

Case  (2) B imaginary, 

v2
c B sin at   cos kz V 2,C     — 

2 a B/g 

w„ (1 + 
Z^o 

sinh 2 750 ) 

2 o- B/q 

w° »' T     slr.h   2^0 ' 

sin    (w0   x - o~t)  cos kz 

sin    (wo x - crt)   sin kz 

Case (3) Superposition of      v,c       and 

v   =  v,c  + v2
s   = B ccs   (kz-ct) 

n     =7; l,c     + 77 *•s     = 
'QD 'CD CD 

2 CT B/q 

*°  (!+     smh 2^0" ) 
cos   (w0 x - k z - cr t) 

(5.5) 

(3.6) 

.-.. wr- -   -.. . 
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The. first two oases represent situations in which the sections of the 

partition move with the :sm« phase but varying amplitudes.  The resulting 

wave motion, sufficiently far from the partition, will form a shori-oraotod 

wave system propageting outward. 

In the third case, on the cth-r-r hand, the sections move with the same 

amplitude but differing phases.  The resulting system is now a piano wave 

-i  k moving outward at an angle, tan  — , to the x-axis, with frequency cr 

and wave length        . 

If    fz0 denotes the amplitude of the motion of the partition, 

obtain from (3.5) and (3.6), 

Mo 
2K 
w0 I + To a 

for the amplitude, 

_ — (3.7) 
sinh   2~yt a 

In      I ,  of the plane wave and in case  (3).    Now the 

items we are at liberty to specify are       <x    and      k    ,  hence we take as parameters 

Ka 

and 

2 w q , and k o ror calculations the important parameters are Ka 

Wo 
= P     , the latter of which, as we have seen, measures the direction 

of propagation of the plane wave. 

K  a 
For water of infinite depth,      y0    = K      ,  and thus 2 w       *8 ***e ratio 

» 
of the depth to deep water wave length of long-crested waves of frequency       a 

, , (5) ^ ,_,   *^ Ko ;el'sv ' this being the case, we oan enter Wieg< 

place of d/Lo» 

tables with 2 w taking the 

A f«w results are indicated in Figure 1. In Figure 2 the corresponding 

oase of a flapper type generator, whioh is hinged at the bottom, is shown. It is 

noted that the wave-maker becomes increasingly less efficient as one attempts 

to inorease the propagation angle.  In faot, as    9 approaohes 45° 

the ratio in (3.7) approaches 0. If one attempts to produce greater angles one 

merely succeeds in generating so-called "edge waves" which vanish exponentially 

away from the generator. A similar situation involving a submerged oiroular 

:^imr- *-•> 
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cylinder is considered in & recent paper by Ursa11*     . 

To obtain the pressure at the partition w* wan uss 

p ( 0,y, z, t) = pq  -%— |Xl0 

We obtain then, 

p = -pg  crRe {lB jT° G (0, y, 0, y')dyVia *  } "*  kz, 

an integral which could be obtained by quadrature. 

4 Reflection from a Strip 

As a second application wo consider the reflection of short orested 

waves from a strip of finite width rigidly fixed in the free surface. Math- 

ematically the problem is the following 

<£xx  + <£yy " K* 4>     = ° 
0y = 0 on   y = 0 

<p, — K <p    =0    on   y — a 

on 

in  0 < v < 0 

*, u y = a 

x I > b 

x I < b 

(4.1) 

(4.2) 

,!•,« 

(4.4) 

<p -  A cosh ^y £""°* satisfies a oondition of form (2,9), (4.5) 

He res&rk at this stage' that the analysis of Fritz John may be carried 

over almost intact to yield a fairly general existence theorem for the diffrac- 

tion problem formulated in section two.  This theorem, however, demands that 

tne obstacle surface be perpendicular to the free surfaoe at their inter- 

section, a oondition which is not satisfied in the present problem.  Our 

construction will in itself constitute such an existence theorem for the present 

case. 

Consider the function, 

A* b 

//(*', y')  = <  f(x) G(x,ct, x , y ) dx + A cosh >c y'  e I     „ I *o * (4.6) 
j-b 

where    f (x)   is a function we will determine later. Prom (2*16) we find. 
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V/-.x ,y } ~ Acosn jgy * -1 ^ ^rr, %o     . ,     2r. o        * J       f(x)<?        ax 

j s  6 *u 

if 

= A cosh ^yV"e * + T, cosh^yV*0"' ao x —+0D  ,  (4.7) 

slnh  2 pjo 

= A cosh vy'p
lw°x'+R cosh ^yV*0*'      as x —    00 .  (4.8) 

Thus \}f ( x  , y )      satiisfisB (4.5) irith R representing a reflected wave and 

% oosh   y  6    ° combining with the incident wav* to give a trans- 

mitted wave.     That    \\f  also satisfies  (4.1),   (4.2),  and (4.3) may be verified by 

direct differentiation.     In order  to oaks \j/  ( x   , y  )        a oolution of 

our problem it remains to show that f ( x ) may be chosen in such a way 

that  (4*4)  is  satisfied. 

Prom the  defining equation  (2.12)  for  G »a find, 

d G     , 1     /, I      I"" sinh   y y' .        ,. 
-37-   (x, 0, x , y )  .  - - ^        Kco8hyo  - y sinh ' y"9 

G0S w ' *    »' d" »<4'9> 

Ou differentiation of the identity (2.13) with respect to        b        we find that 

(AjP)  mav 'as wri-fctan   AS - 

0- (x, a, x', y')  -  + 4-  -fa   { K0 ( k /(T-T? + {a- y')2  ) } 

F J0      [K  coshyo-xsinh7a-+^ ' J COS w |x-x I d w  .(4.10) 

We now state without proof the following result, part of which was 

essentially proved in seotion three. 

  ;        f(x) Ko(kv/Tx-x')z-i-{a-y')2 )dx, for    f(x) 

continuous in        -b<x<+b,    is a solution of    <£>x, x, •+-$..-k2<J> = 0   is    y' <G, 

'    "  -• 
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is continuous on    y'= a ,     -b<x<-i-h        when defined as its limit value, 

from        y    <   o and satisfies, 

y'—O     ~      $JyV       =     7Tf(x) for        "b<x'<b 
y'' < u 

Brom this lemma, and Equation (4.10) we have. 

,,      -~a—, =   f (x)+ /   f(s) K(x,x)dx + iw0  A cosh   yn c <?' 
y J a 0   y ./_b 

u '° 

where 

K(X,X)=-TJQ      [K^oshya-ysinhya   + "J    COS  w lx-x I   dw 
c 

_ K_   /**  cosh ya  cos w |x-x'| dw 
"~ IT      /., 

Setting 
lim 
u i a 

determination of 

'0 K cosh ya - y sinh ya 

—~5   |— = 0    gives,  therefore,  an integral equation for the 

f(x) 

Let us investigate the nature of the kernel, K (x, x )     .    We write, 

i\ J_  /*CD   cos wj«-x'ldw |       rw   y cos w (»-x') [tonh yo-l] 
KU,X"     »* !--£-• FK'i,        (I--S-tonhVoH !-•*-) 

d w 

where   C , C     oonsist of the positive real axis except for eemi-cireles in 

the lower half plane about the singularities. The first term tben contains 

whatever difficulties may arise for   x = x  .  Proceeding as in an earlier 

calculation, we find, 

„ - V W * • k * ! .< - x' I 

K (x,x') = }/8 

•'0 

e 
y7+7 d w + 

where the dots indicate terms which remftin bounded a.s x — x      «     Thus* 

according to Equation (2.13), K  ( x, x')       behaves like      K0 ( k   I  x~x I)    near 

x = x , and has a logarithmic singularity there> 
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We are thus confronted with the integral equation, 

- iw0 A cosh -fto e  •  =f(x')-r/ f (x) K (x, x") dx , (4.11) 

in which the kernel becomes logarithmically infinite as  x — x ,  The j 
Ffedholm theory nay be applied and will yield the existence of a continuous 

solution of (4=, 11) provided there exist no non-trivial solutions of tha as- 

sociated homogeneous equation.  To see that no r.uoh solution exists, we suppose 

there were one and study its properties*  Let   f0 (xO    be the solution and 

form the funstion, 

jfe(x>y)=s/  f0(x) G (x, a, x
-', y') dx . 

• •b 

From the expression (2*14) for 6, and Lemma (1) we conclude that   y  (x , y ) 

is oontinuous in   0<y < 0  ,  -b < x  < b .  Moreover   f0(x )  satisfies 

(4.11) with the left hand side set equal to 0, henoe. 

lim   a <^0 (x',y) 

d G (x,a, x'_,a) 
y 

where the difference becomes infinite in such a way that 

0 b (x,a, x ,a) 1      . 1 
How -3-^7  — K G ( x, a. x , a ) -= 0    in     -b<x<+D       except at     x = x 

rbf(x)[^^f-,,'a) -KG(x,a>x
/a)l    dx = f(x")     . 

Therefore, 

y'ta i"iT"~ ' K l//  f*.V>)-Mx)    .. (4#12) 

(It is  important to note that this relation holds also for the functions 

i// and      f (x )     which are to eolv* «»^r problem,    a fact wmoh nates 

possible a direct determination of       ^{x ,o)   one*     i(x') is known,  without 

recourse to another integration.) 

ww—i 
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finally we sake use c£ another lemma, which w* alecs stats without proof i 

Lemma 2j        Let       <p(x. y)      be a solution of    <£     + <$•   ,  -^Z<f> — Q   in   Q<y<a 

satisfying the following conditionsi 

J.    n . f — U 

on      y = 0 

on      y = a ,    I x I > b 

on     y = a       I x I < b 

a) 6 y  = 0 

b) <£y 

c) <£y = 0 

4) 4/    i<£x (L,y)-iC<£(L,y)l2dy + /_   I &(-L,y)-I C <£ (-! ,y)l2   dy = 0 

e)     Hm /   <£(pn  dl  = 0 where T€ consists of the 

hemispheres,       (x ±b)   + y     =e, y<a    . 

Then     c£ ( x , y)  ^ 0 in      0<y<a. 

The lemma is intuitively obvious, sines it =erely states that if there 

is no incident wave and the strip is held rigid, no motion can be produced in 

the fluid.    A proof may be derived from an analogous Isama giveD by Frite John. 

The function        <//, (x , y )  enters the hypothesis of the lenaua,  in fact: will 

be continuous at      (±b,a)     j thus it is identically 0 in        0 < y  <a     , and 

by the continuity also for y   — a.    S?e conclude fc («; ) = 0 in    -b < x   < b 

It is interesting to note that we may pass to the limit as     k — 0  > 

while st:Lll retaining one same type of behavior for large        I x I      .    The fact 

does not eeea obvious  since the behavior of solutions of Laplaoe's equation e>t 

large distances  is much different than  that of solutions of     <£XlC + $vu ~k <£= 0 

for    >' > 0 .       For   k=0   we obtain for the potential       <f> (x , y') 

r     /»CD 

•*r   COS w i x~x'i dw i <jx wj 14.13) *   U''y/)   =   "»X„      f (X)U     IK cosh        - r   .../ 
c 

where f(x)      satisfies, 

-iw0 A cosh wo ae-*°*' = f(x') - *r £" «*)[£* C08h g?T^h w0 <» w l*-*'»<*]d« (4.14) 

wo    being a solution of        K cosh w0 a  = w0   sinh w0 a   . 
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If the depth is lnlimw cha kernel ray oo rivaluatsd explicitly and 

yields, 

-i w0 

'*= 

A£iw-x'=f(x')--£- fbf(x) [iri6-,KW, + cos Klx-x'l Ci (K!X-X'|) 

+ sinKU"c'l ( Si (Klx-x'l)~|- ) dx 

=h*rs  C-i, Si  are the integral-oosine and :.ntegral-sine functions respectively. 

The appearanoe of the term  Gi ( K i x ~x I ) confirms our earlier remark that the 

kernel beoomoe logarithmically infinite as  i -*x 

Ihe existence of a solution having been established, one may turn to 

the question of obtaining numerical results.  An equation of the typa (4.11) 

oan be solved in a straightforward way by replacing  f (x)  by a polynomial 

approximation »nd thus obtaining a sys   a of  n    linear equations for the 

determination of the value of • f (x )   at-   n   point?.  The numerical work ia= 

volves numerioal computation of integrals involving   K(x, x ) and powers of x . 

The singularity gives no difficulty as it may be subtracted off and the in- 

tegrals involving it carried out explicitly. Some work of this type is under- 

way and It is hoped may be presented in the future. 

A more elegant, although possibly less useful method is the application 

of the variational methods of Sohwinger' ',.which were developed to treat 

aperture diffraction problems. If Equation (4.11) is multiplied by  f(x ) 

and integrated over the strip and use is made of (4.8) we find, 

•• /v -     I 
/** f(x')2 dx't f Tbf(x)f(x') Klx.x'ldxd*'     ,.   ,., 

( jr   f(*-)e        dx ) 

F 
* 
I 

where       r        is  essentially the reflection coefficient.    Now    the quantity on the 

right hand side of  (4.16)  is  stationary with respect to first ordar variations 

of        f ( x)      about its correct value as determined from the  integral! equation  (4.11), 
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16. 

It might be hoped, therefore, that the reflection coefficient would be relatively 

Insensitive to errors in    f (x)    . 

More explicit use of the stationary ch£.?^«*e.r of mey be ma do as 

follows*    Suppose »»» expand    f (x)   in     (— b, b)      J.a & Fourier ssriss*, 

f(x) = 2! tf*    ^      * 
-00 

If we substitute  Wiis expression in (4*11) we obtain, 

(2b +f   an  a.,+XX   am an   C,Tin)r   - (+f   an  B, )2 

where 

Cm ,  =   1 !   e       e       K (x.x ) 
'        J J 

dx dx in - f e 
J-r> 

-inx       iw.x     . 
cr ax      . 

! i 
S i 

Differentiating with respect to an and noting thai, r is  stationary, 

("2 a.m + *f an Cmn)r = 2Bfn( ? an   Bn) m =0, ±1, ± 2,.. . 

Defining constants,    • Dp        , by 

we obtain finally 

—    r     Up p = C, ±l,±2,. . (4.17) 

Jfc*- 

r = 2 V Dp Bp 
-00    r 

D  + y C  D  = B m m =0, ±1, ±2, 

(4.18) 

(4.19) 

We have thus transformed the problem into solving an infinite system 

of linear equations, (4.19).  Onoe the     Dn °s aro found ,tho reflection 00- 

effiolent can be ooaiputed frran (4.IS),  in theory one oould also obtain  f (x) . 

The  ohoioe of functions j^ + inv J, for the expansion of f(x) is not es- 

sential to the method, lb  auggesta itsolf, however, since for oertain values 

of    w0     , the set.   s  Bn t      reduces to a single term. 

mm    •••»! »>• "" HIT, H^HMIPW 
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17. 

Substituting the series for f(x)     with replaced by Dry  in 

the integral equation fixes   the  constant 0_ and thus  determines 

For the i,a»i of diffraction of sound ro.7*3 through a circular aperture,  the 

scheme has proved quite successful,   and it was found that only a few terms of 

the infinite series suffice to glva quits accurate approximations* 
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